««Полное Погружение — блокировку информации, поступающей к мозгу от всех пяти органов чувств, перехват сигналов, идущих от мозга к телу и замена этих сигналов «фальшивыми» — сгенерированными компьютером. Полное Погружение было в первую очередь использовано в индустрии компьютерных игр, поскольку позволяло полностью переключить сознание игрока на виртуальный игровой мир»»
Погружение — это состояние сознания, часто искусственное, при котором самоосведомлённость субъекта о своём физическом состоянии уменьшается или теряется совсем. Это психическое состояние часто сопровождается ощущением бесконечности пространства, сверхсосредоточенностью, искажённым чувством времени, а также лёгкостью действий. Термин широко применяется для описания погружения в виртуальную реальность, искусства инсталляции и видеоигр, но при этом неясно, используется ли это слово единообразно. Этот термин относится также к часто используемым модным словам, поэтому смысл его довольно нечёткий, но он несёт в себе оттенок чего-то захватывающего.
Ощущение погружения в виртуальную реальность (ВР) можно описать как полное присутствие внутри внушаемого пространства виртуальных предметов, где всё относящееся к этому пространству обязательно предполагает его «реальность», а субъект кажется совсем отключённым от внешнего физического мира.
Согласно Эрнсту Адамсу, разработчику и консультанту компьютерных игр, погружения можно поделить на три основных категории:
Тактическое погружение:
Тактические погружения ощущается при выполнении тактильных операций, требующих сноровки. Игроки чувствуют себя «в ударе» при выполнении действий, которые приводят к успеху.
Стратегическое погружение:
Стратегическое погружение более интеллектуальное, оно связано с решением умственных проблем. Шахматисты испытывают стратегическое погружение при выборе правильного решения среди широкого спектра возможностей.
Повествовательное погружение:
Повествовательное погружение происходит тогда, когда игрок проникается сюжетом, оно похоже на то, что испытывает человек при чтении книги или при просмотре фильма.
Погружение в виртуальную реальность — это гипотетическая технология будущего, которая существует сейчас по большей части как виртуальная реальность в арт-проектах. Она заключается в погружении в искусственную среду, где пользователь чувствует себя точно так же, как в обычной реальности консенсуса.
Требования
Понимание работы нервной системы
Потребуется всеобъемлющее понимание того, какие нервные импульсы соответствуют определённым ощущениям и какие двигательные импульсы вызывают нужные мышечные сокращения. Это позволит создавать правильные ощущения пользователя и вызывать правильные действия в среде виртуальной реальности. В настоящий момент наиболее многообещающим проектом научных исследований является Blue Brain Project, в котором сформулирована идея: путём разработки крупномасштабных компьютерных моделей понять, как работает мозг.
Цифровая среда погружения — это искусственная, интерактивная, созданная с помощью компьютера сцена или «мир», внутрь которого может погрузиться пользователь.
Взаимодействие
Когда органы чувств достаточно хорошо верят в представление, а цифровая среда становятся как бы реальностью, пользователь должен иметь возможность взаимодействовать с окружающей средой естественным, интуитивным способом. Среда погружения может реагировать на действия и движения пользователя, например, имеется система отслеживания движений, компьютерное зрение, управление жестами. Интерфейсы управления мозгом реагируют на мозговую активность пользователя.
Для взаимодействия со средой виртуального погружения нужен интерфейс….
Нейрокомпьютерный интерфейс
Пример управления с помощью однонаправленного нейро-компьютерного интерфейса
Нейро-компьютерный интерфейс (НКИ) (называемый также прямой нейронный интерфейс, мозговой интерфейс, интерфейс «мозг — компьютер») — система, созданная для обмена информацией между мозгом и электронным устройством (например, компьютером). В однонаправленных интерфейсах внешние устройства могут либо принимать сигналы от мозга, либо посылать ему сигналы (например, имитируя сетчатку глаза при восстановлении зрения электронным имплантатом). Двунаправленные интерфейсы позволяют мозгу и внешним устройствам обмениваться информацией в обоих направлениях. В основе нейро-компьютерного интерфейса, часто используется метод биологической обратной связи.
Предыстория
Изучение оснований, на которых базируется нейро-компьютерный интерфейс, уходит корнями в учение И. П. Павлова об условных рефлексах и регулирующей роли коры. Это научное направление возникло в самом начале XX века в Институте экспериментальной медицины (Санкт-Петербург). Развивая эти идеи, П. К. Анохин с 1935 года показал, что принципу обратной связи принадлежит решающая роль в регулировании как высших приспособительных реакций человека, так и его внутренней среды. В результате была разработана теория функциональных систем, потенциал использования которой в нейро-компьютерных интерфейсах далеко не исчерпанБольшой вклад внесли работыН. П. Бехтеревой с 1968 по 2008 гг. по расшифровке мозговых кодов психической деятельности, продолжающиеся до настоящего времени её последователями, в том числе, с позицийнейрокибернетики и офтальмонейрокибернетики.
Исследования нейро-компьютерного интерфейса начались в 1970-х годах в Калифорнийском университете в Лос-Анджелесе (UCLA). После многолетних экспериментов на животных в середине девяностых годов в организм человека были имплантированы первые устройства, способные передавать биологическую информацию от тела человека к компьютеру. С помощью этих устройств удалось восстановить поврежденные функции слуха, зрения, а также утраченные двигательные навыки. В основе успешной работы НКИ лежит способность коры больших полушарий к адаптации (свойство пластичности), благодаря которому имплантированное устройство может служить источником биологической информации.
Попытки создания
В нейрохирургическом центре в Кливленде в 2004 году был создан первый искусственный кремниевый чип — аналог гиппокампа, который в свою очередь был разработан вуниверситете Южной Калифорнии в 2003 году. Кремний обладает возможностью соединять неживую материю с живыми нейронами, а окруженные нейронами транзисторы получают сигналы от нервных клеток, одновременно конденсаторы отсылают к ним сигналы. Каждый транзистор на чипе улавливает малейшее, едва заметное изменение электрического заряда, которое происходит при «выстреле» нейрона в процессе передачи ионов натрия.
Новая микросхема способна получать импульсы от 16 тысяч мозговых нейронов биологического происхождения и посылать обратно сигналы к нескольким сотням клеток. Так как при производстве чипа нейроны были выделены из окружающих их глиальных клеток, то пришлось добавить белки, которые «склеивают» нейроны в мозге, также образуя дополнительные натриевые каналы. Увеличение числа натриевых каналов повышает шансы на то, что транспорт ионов преобразуется в электрические сигналы в чипе.
Лучшие комментарии